Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Qingyi L. Horn, Daniel S. Jones,* Robin N. Evans, Craig A. Ogle and T. Craig Masterman

Chemistry Department, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA

Correspondence e-mail:
djones@email.uncc.edu

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.036$
$w R$ factor $=0.046$
Data-to-parameter ratio $=10.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Chloro(1,5-cyclooctadiene)(triphenylphosphine)rhodium(I)

The crystal and molecular structure of the title compound, $\left[\mathrm{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right]$, has been determined by means of X-ray diffraction. Compounds of this nature are important because of their ability to act as homogenous hydrogenation catalysts and to serve as precursors for more elaborate compounds.

Comment

The reaction of the rhodium (I) dimer $\left[(\operatorname{cod})_{2} \mathrm{Rh}_{2} \mathrm{Cl}_{2}\right](\operatorname{cod}=$ cycloocta-1,5-diene), (1), with excess triphenylphosphine quickly gives $\mathrm{RhCl}(\operatorname{cod}) \mathrm{PPh}_{3}$, (2), and then, in a much slower reaction, gives $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, (3), Wilkinson's catalyst (Osborn et al., 1966), which was one of the first homogenous hydrogenation catalysts. This is illustrated in the scheme below. In our studies of the reaction of triphenylphosphine and bulkier phosphines with $(\operatorname{cod})_{2} \mathrm{Rh}_{2} \mathrm{Cl}_{2}$, we have isolated crystals of $\mathrm{RhCl}(\mathrm{cod}) \mathrm{PPh}_{3}$, suitable for X-ray crystal structure analysis. A similar rhodium(I) bis-alkene-phosphine complex has been studied by X-ray crystal structure analysis and reported in the literature (Iglesias et al., 1987). These compounds are important because of their ability to act as homogenous hydrogenation catalysts and as precursors to more elaborate compounds.

The Rh atom of this molecule is coordinated to one Cl atom, one P atom, and the two double bonds of cyclooctadiene. The Rh-double-bond distances of 2.005 (7) and 2.118 (7) \AA are of normal length for this type of rhodium compound. Rh-cod distances and angles for the title compound and some related structures are listed in Table 1. It can be seen that the smaller $\mathrm{Cl}-\mathrm{Rh}-D$ angles correspond to the longer $\mathrm{Rh}-D$ distances and that the larger $\mathrm{Cl}-\mathrm{Rh}-D$ angles correspond to the shorter $\mathrm{Rh}-D$ distances (D is the midpoint of a cod double bond). This same trend holds true for the title compound.

Experimental

Crystal data

$\left[\mathrm{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$
$M_{r}=508.84$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=16.246$ (3) A
$b=8.145$ (2) \AA
$c=16.992$ (4) \AA
$V=2248$ (1) \AA^{3}
$Z=4$
$D_{x}=1.50 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Picker four-circle diffractometer $\omega-2 \theta$ scans
Absorption correction: Gaussian
(MolEN; Enraf-Nonius, 1990)
$T_{\text {min }}=0.776, T_{\text {max }}=0.799$
3170 measured reflections
3170 independent reflections
2839 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F
H -atom parameters constrained
$R=0.036$
$w R=0.046$
$S=2.18$
2839 reflections
262 parameters
Mo $K \alpha$ radiation
Cell parameters from 17 reflections
$\theta=10.0-20.5^{\circ}$
$\mu=0.96 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Irregular, brown
$0.29 \times 0.28 \times 0.28 \mathrm{~mm}$
$\theta_{\text {max }}=28.3^{\circ}$
$h=0 \rightarrow 21$
$k=0 \rightarrow 10$
$l=0 \rightarrow 22$
3 standard reflections frequency: 120 min intensity decay: none

Table 1
Rh-to-cod ligand distances and angles $\left(\AA,{ }^{\circ}\right)$ in the title compound and in some related structures.

Comp	$\mathrm{Rh}-D 1$	$\mathrm{Rh}-D 2$	$\mathrm{Cl}-\mathrm{Rh}-D 1$	$\mathrm{Cl}-\mathrm{Rh}-D 2$	$D 1-\mathrm{Rh}-D 2$
A	$1.986(6)$	$2.013(6)$	$178.1(2)$	$90.8(2)$	$87.7(3)$
B	$1.989(5)$	$2.026(5)$	$177.9(2)$	$91.9(2)$	$88.2(2)$
C	$1.978(5)$	$2.001(5)$	$175.9(2)$	$91.9(1)$	$88.0(2)$
D	$1.987(8)$	$2.118(6)$	$177.5(5)$	$90.9(3)$	$86.8(4)$
(2)	$2.005(7)$	$2.118(7)$	$174.6(2)$	$88.8(2)$	$86.5(4)$
E	$1.988(6)$	$2.099(7)$	$176.5(4)$	$90.4(3)$	$86.3(4)$
F	$1.996(9)$	$2.089(7)$	$175.7(3)$	$90.2(2)$	$85.9(4)$
G	$1.994(4)$	$2.092(4)$	$176.1(1)$	$90.1(1)$	$84.0(2)$

Notes: $D 1$ and $D 2$ are the midpoints of the two double bonds in cod; $A=$ $\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}\left[\mathrm{Et}_{3} \mathrm{P}=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right]$ (Imhoff et al., 1990); $B=\mathrm{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2}\right)$ (Flörke et al., 1992); $C=\operatorname{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2}\right) \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (Flörke et al., 1992); $D=$ $\mathrm{RhCl}(\operatorname{cod}) \mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)_{3}$ (Iglesias et al., 1987); (2) = title compound $\mathrm{RhCl}(\operatorname{cod}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$; $E=\mathrm{RhCl}(\operatorname{cod})\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}(o\right.$-tol $\left.)\right]$ (Hubbard, 1988); $F=\mathrm{RhCl}(\operatorname{cod})\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)(o \text {-tol })_{2}\right]$ at 294 K (Hubbard, 1988); $G=\operatorname{RhCl}(\operatorname{cod})\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)(o \text {-tol })_{2}\right]$ at 123 K (Pinkerton, 1988).

The structure was refined using a mainframe computer. Because cycles of refinement on the mainframe were so time-consuming, refinement was stopped when the largest ratio of parameter shift to standard uncertainty was equal to 0.28 . The large goodness of fit value, 2.18 , probably indicates a less than ideal weighting scheme. Unfortunately, the MolEN program that was originally used to solve and refine the structure is no longer available to us. Otherwise further refinement could have been undertaken.

Data collection: KRISEL CONTROL Software (KRISEL CONTROL, 1982); cell refinement: KRISEL CONTROL Software;

Figure 1
View of $\mathrm{RhCl}(\mathrm{cod}) \mathrm{PPh}_{3}$. This diagram illustrates the coordination of the Rh atom to the centers of the double bonds of cod. Displacement ellipsoids are shown at the 50% probability level.
data reduction: MolEN; program(s) used to solve structure: MolEN; program(s) used to refine structure: MolEN; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: Word Pad, IUCR CIF Template.

The crystals were prepared by Dr Craig Ogle and T. Craig Masterman of the Chemistry Department at the University of North Carolina at Charlotte. This research was supported, in part, by funds provided by The University of North Carolina at Charlotte.

References

Enraf-Nonius (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flörke, U., Ortmann, U. \& Haupt, H.-J. (1992). Acta Cryst. C48, 1663-1665.
Hubbard, J. L. (1988). Private Communication.
Iglesias, M., Del Pino, C., Corma, A., Garcia-Blanco, S. \& Martinez-Carrera, S. (1987). Inorg. Chim. Acta, 127, 215-221.

Imhoff, P., Elsevier, C. J. \& Stam, C. H. (1990). Inorg. Chim. Acta, 175, 209216.

KRISEL CONTROL (1982). KRISEL CONTROL Software. KRISEL CONTROL Inc., Rockville, Maryland, USA.
Osborn, J. A., Jardine, F. H., Young, J. F. \& Wilkinson, G. (1966). J. Chem. Soc. A, pp. 1711-1732.
Pinkerton, A. A. (1988). Private Communication.

